$\mathrm{C}(4 A)-\mathrm{N}(4 A)-\mathrm{O}(4 A)$	$124.8(9)$	$\mathrm{C}(4 B)-\mathrm{N}(4 B)-\mathrm{O}(4 B)$	$119.8(9)$
$\mathrm{C}(4 A)-\mathrm{N}(4 A)-\mathrm{Co}(A)$	$112.7(9)$	$\mathrm{C}(4 B)-\mathrm{N}(4 B)-\mathrm{Co}(B)$	$116.7(7)$
$\mathrm{O}(4 A)-\mathrm{N}(4 A)-\mathrm{Co}(A)$	$122.3(8)$	$\mathrm{O}(4 B)-\mathrm{N}(4 B)-\mathrm{Co}(B)$	$123.1(7)$
$\mathrm{C}(9 A)-\mathrm{N}(5 A)-\mathrm{Co}(A)$	$120.7(6)$	$\mathrm{C}(9 B)-\mathrm{N}(5 B)-\mathrm{Co}(B)$	$119.2(7)$
$\mathrm{N}(1 A)-\mathrm{C}(1 A)-\mathrm{C}(2 A)$	$113.8(11)$	$\mathrm{N}(1 B)-\mathrm{C}(1 B)-\mathrm{C}(2 B)$	$115.8(11)$
$\mathrm{N}(1 A)-\mathrm{C}(1 A)-\mathrm{C}(5 A)$	$125.4(12)$	$\mathrm{N}(1 B)-\mathrm{C}(1 B)-\mathrm{C}(5 B)$	$123.0(11)$
$\mathrm{C}(2 A)-\mathrm{C}(1 A)-\mathrm{C}(5 A)$	$120.4(11)$	$\mathrm{C}(2 B)-\mathrm{C}(1 B)-\mathrm{C}(5 B)$	$121.2(12)$
$\mathrm{N}(2 A)-\mathrm{C}(2 A)-\mathrm{C}(1 A)$	$110.8(11)$	$\mathrm{N}(2 B)-\mathrm{C}(2 B)-\mathrm{C}(1 B)$	$108.8(11)$
$\mathrm{N}(2 A)-\mathrm{C}(2 A)-\mathrm{C}(6 A)$	$122(2)$	$\mathrm{N}(2 B B-\mathrm{C}(2 B)-\mathrm{C}(6 B)$	$124.7(11)$
$\mathrm{C}(1 A)-\mathrm{C}(2 A)-\mathrm{C}(6 A)$	$126.7(13)$	$\mathrm{C}(1 B)-\mathrm{C}(2 B)-\mathrm{C}(6 B)$	$126.5(12)$
$\mathrm{N}(3 A)-\mathrm{C}(3 A)-\mathrm{C}(7 A)$	$127.5(12)$	$\mathrm{N}(3 B)-\mathrm{C}(3 B)-\mathrm{C}(7 B)$	$121.4(11)$
$\mathrm{N}(3 A)-\mathrm{C}(3 A)-\mathrm{C}(4 A)$	$107.5(10)$	$\mathrm{N}(3 B)-\mathrm{C}(3 B)-\mathrm{C}(4 B)$	$114.3(10)$
$\mathrm{C}(7 A)-\mathrm{C}(3 A)-\mathrm{C}(4 A)$	$123.8(12)$	$\mathrm{C}(7 B)-\mathrm{C}(3 B)-\mathrm{C}(4 B)$	$124.2(11)$
$\mathrm{N}(4 A)-\mathrm{C}(4 A)-\mathrm{C}(8 A)$	$119.4(10)$	$\mathrm{N}(4 B)-\mathrm{C}(4 B)-\mathrm{C}(8 B)$	$126.3(10)$
$\mathrm{N}(4 A)-\mathrm{C}(4 A)-\mathrm{C}(3 A)$	$117.1(10)$	$\mathrm{N}(4 B)-\mathrm{C}(4 B)-\mathrm{C}(3 B)$	$112.4(9)$
$\mathrm{C}(8 A)-\mathrm{C}(4 A)-\mathrm{C}(3 A)$	$122.7(10)$	$\mathrm{C}(8 B)-\mathrm{C}(4 B)-\mathrm{C}(3 B)$	$121.1(10)$
$\mathrm{C}(10 A)-\mathrm{C}(9 A)-\mathrm{C}(14 A)$	$119.3(6)$	$\mathrm{C}(10 B)-\mathrm{C}(9 B)-\mathrm{C}(14 B)$	$122.6(12)$
$\mathrm{C}(10 A)-\mathrm{C}(9 A)-\mathrm{N}(5 A)$	$119.5(5)$	$\mathrm{C}(10 B)-\mathrm{C}(9 B)-\mathrm{N}(5 B)$	$116.6(11)$
$\mathrm{C}(14 A)-\mathrm{C}(9 A)-\mathrm{N}(5 A)$	$121.3(9)$	$\mathrm{C}(14 B)-\mathrm{C}(9 B)-\mathrm{N}(5 B)$	$120.6(11)$
$\mathrm{C}(11 A)-\mathrm{C}(10 A)-\mathrm{C}(9 A)$	$118.2(7)$	$\mathrm{C}(11 B)-\mathrm{C}(10 B)-\mathrm{C}(9 B)$	$114.7(12)$
$\mathrm{C}(10 A)-\mathrm{C}(11 A)-\mathrm{C}(12 A)$	$122.3(12)$	$\mathrm{C}(10 B)-\mathrm{C}(11 B)-\mathrm{C}(12 B)$	$125.3(13)$
$\mathrm{C}(13 A)-\mathrm{C}(12 A)-\mathrm{C}(11 A)$	$118.3(13)$	$\mathrm{C}(13 B)-\mathrm{C}(12 B)-\mathrm{C}(11 B)$	$117.6(13)$
$\mathrm{C}(12 A)-\mathrm{C}(13 A)-\mathrm{C}(14 A)$	$119.3(12)$	$\mathrm{C}(12 B)-\mathrm{C}(13 B)-\mathrm{C}(14 B)$	$121.0(13)$
$\mathrm{C}(13 A)-\mathrm{C}(14 A)-\mathrm{C}(9 A)$	$122.2(11)$	$\mathrm{C}(13 B)-\mathrm{C}(14 B)-\mathrm{C}(9 B)$	$118.6(13)$

The structure was solved by direct methods and refined by full-matrix least squares. A pseudo-orthorhombic cell exists with $a_{o}=18.334, b_{o}=35.425, c_{o}=10.855 \AA$ [transformation matrix: (001/201/010)]; space group Cmca, but the Laue class was monoclinic and $R_{\text {int }}$ for the orthorhombic cell was 0.317 , so the determination and refinement were carried out using the monoclinic cell. Owing to the small size of the crystal, a low number of non-negative intensities were collected and the resolution was of low accuracy.

Data collection: Philips diffractometer software. Cell refinement: Philips diffractometer software. Data reduction: CFEO (Solans, 1978). Structure solution: SHELXS86 (Sheldrick, 1985). Structure refinement: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1976; Brueggemann \& Schmid, 1990). Preparation of material for publication: CIFTAB (Sheldrick, 1994).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1144). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Botoshanskii, M. M., Simonov, Yu. A., Malinovskii, T. I., Ablov, A. V. \& Bologa, O. A. (1975). Dokl. Akad. Nauk SSSR, 225, 323325.

Bresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, M., Summers, M. F. \& Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1-9.
Brueggemann, R. \& Schmid, G. (1990). PC adaptation of ORTEP. University of Ulm, Germany.
Chakravorty, A. (1974). Coord. Chem. Rev. 13, 1-43.
Dolphin, D. (1982). Editor. B_{12}, Vols. 1 and 2. New York: Wiley Interscience.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Langer, E. (1984). Editor. Methoden der Organischen Chemie (Houben-weyl), 4th Edition, Vol. 13/9b, pp. 1-284. Stuggart: George Thieme Verlag.

López, C., Alvarez, S., Aguiló, M., Solans, X. \& Font-Altaba, M. (1987). Inorg. Chim. Acta, 127, 153-159.

López, C., Alvarez, S., Solans, X. \& Aguiló, M. (1987). Inorg. Chim. Acta, 133, 101-105.
López, C., Alvarez, S., Solans, X. \& Font-Altaba, M. (1986). Inorg. Chim. Acta, 121, 71-75.
Nemeth, S. \& Simandi, L. (1982). J. Mol. Catal. 14, 87-93.
Noguchi, M., \& Kambara, S. (1963). J. Polym. Sci. B, pp. 553-557.
Reigl, F. \& Rubistein, H. (1923). Ann. Chim. Pharm. 433, 193-197.
Rockenbauer, A., Eyor, M., Kwiecinski, M. \& Tyrlik, S. (1982). Inorg. Chim. Acta, 58, 237-241.
Samus, N. \& Ablov, A. V. (1979). Coord. Chem. Rev. 28, 177-183.
Schrauzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.
Schrauzer, G. N. \& Kohnle, J. (1964). Chem. Ber. 97, 3056-3059.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). CIFTAB. University of Göttingen, Germany. Solans, X. (1978). CFEO. University of Barcelona, Spain.
Solans, X., Font-Altaba, M. \& Briansó, J. L. (1983). Z. Kristallogr. 162, 305-312.
Toscano, P. J. \& Marzilli, L. G. (1984). Prog. Inorg. Chem. 31, 105124.

Trogler, W. C., Stewart, R., Epps, L. A. \& Marzilli, L. G. (1974). Inorg. Chem. 13, 1564-1570.

Acta Cryst. (1996). C52, 66-69

trans-Tetracarbonylbis(tri-tert-butyl phosphite)molybdenum(0)

Elmer C. Alyea, George Ferguson and Shu-Quan Song

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
(Received 28 April 1995; accepted 13 June 1995)

Abstract

The Mo atom in the title compound, $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{27^{-}}\right.\right.$ $\left.\mathrm{O}_{3} \mathrm{P}\right)_{2}$], lies on an inversion centre and has slightly distorted octahedral geometry, with principal dimensions Mo-P 2.4699 (7), Mo-C 2.027 (4), 2.031 (3) \AA, P—Mo-P 180, cis-C—Mo-C 88.7 (2), C-Mo-P $86.12(10)$ and $87.27(9)^{\circ}$. The geometry about the P atom is distorted from tetrahedral, with Mo-P-O angles in the range $108.04(9)-126.03(10)^{\circ}$ and reduced $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles in the range 96.71 (13)-106.09 (14) . The average cone angle for the tert-butyl phosphite ligand is 156°.

Comment

The title compound, $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}\right\}_{2}\right]$, (1), was synthesized during our investigations of numerous $\left[\mathrm{Mo}(\mathrm{CO})_{6-n}(\mathrm{PY})_{n}\right] \quad(n=1-3)$ complexes by ${ }^{95} \mathrm{Mo}$

NMR spectroscopy (Alyea \& Song, 1995a,b; Song, 1994). The effects of changes in the P substituent (Y) and the degree of carbonyl substitution have previously been studied by the X-ray analyses of cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}-\mathrm{p}\right)_{3}\right\}_{2}\right]$ (Alyea, Ferguson, Gallagher \& Song, 1994), cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]$ (2) (Alyea, Ferguson \& Zwikker, 1994) and fac$\left[\mathrm{Mo}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{3}\right]$ (Alyea, Ferguson \& Song, 1995). A search of the October 1994 release of the Cambridge Structural Database (Allen, Kennard \& Taylor, 1993) revealed the absence of any other trans$\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{P}_{2}$ fragments involving phosphite ligands. There were only three examples with trans $-\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{P}_{2}$ systems having phosphine ligands, namely, trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{Ph})_{2} \mathrm{~F}\right\}\left\{\mathrm{P}(\mathrm{Ph})_{2}\left(\mathrm{NH}_{2}\right)\right\}\right]$ (Bradley, Wong, Gabe \& Lee, 1986), trans- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{Ph})_{2}(\mathrm{NHMe})\right\}_{2}\right]$ (Gray \& Zhang, 1993) and trans- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{(\mathrm{Ph})_{2} \mathrm{P}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{6} \mathrm{P}(\mathrm{Ph})_{2}\right\}_{2} \mathrm{Mo}(\mathrm{CO})_{4}\right]$ (Ueng \& Hwang, 1991). Accordingly, we decided to examine the structural consequences and the effect on the ${ }^{95}$ Mo NMR chemical shift of forming a disubstituted Mo complex with a bulkier phosphite, namely, $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$.

(I)

The title molecule (Fig. 1) has the Mo atom on an inversion centre, which requires the compound to be the trans isomer with the $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ angle equal to 180°. The Mo atom has a slightly distorted octahedral coordination environment in the solid state. Although consideration of trans influences might have led us to predict a shorter Mo-P bond in (1) compared with cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]$, (2), the Mo- P bond distance in (1) $[2.4699$ (7) \AA] is longer than the average MoP bond distance in (2) [2.442 (2) \AA]. The Mo-P bond elongation in (1) can be attributed to the severe steric hindrance in the molecule (see below). As a result of this steric effect the ${ }^{95}$ Mo NMR chemical shift is significantly downfield (-1626 p.p.m.) as compared with a normal $\delta\left({ }^{95} \mathrm{Mo}\right)$ value for a trans species with a small non-bulky phosphite, e.g. - 1859 p.p.m. for trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ (Song, 1994).

One consequence of the steric bulk of the transphosphite ligands, illustrated in the space-filling diagram (Fig. 2), is distortion of the Mo coordination geometry from octahedral, with the unique $\mathrm{C}-\mathrm{Mo}-\mathrm{P}$ angles [86.12 (10) and $87.27(9)^{\circ}$] distorted from 90° and the Mo- $\mathrm{C}-\mathrm{O}$ angles [177.8 (3) and 178.5 (3) ${ }^{\circ}$] being nonlinear. Applying the 'ligand profile' concept (Ferguson, Roberts, Alyea \& Khan, 1978) to calculate semi-cone angles $(\theta / 2)$ for the phosphite substituents, values of 67 , 82 and 85° are derived. The resultant average cone angle

Fig. 1. A view of compound (1) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A space-filling view of compound (1). Starred atoms (*) are at the equivalent position $-x,-y,-z$.
(θ) is thus 156°, as compared with the maximum cone angle of 172° given by the Tolman method using CPK models (Tolman, 1977). For comparison, the Tolman cone angle θ for $\mathrm{P}(\mathrm{OMe})_{3}$ is only 107°.

Distortion of the tetrahedral geometry at the P atom of compound (1) is shown by variation in the Mo-$\mathrm{P}-\mathrm{O}$ angles $\left[108.04(9)-126.03(10)^{\circ}\right.$] and the reduced $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles $\left[96.71(13)-106.09(14)^{\circ}\right]$. In the case of (2), the $\mathrm{Mo}-\mathrm{P}-\mathrm{O}$ and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles have ranges of $112.5(1)-121.9(1)$ and $96.9(2)-104.4(2)^{\circ}$, respectively. Relief from intramolecular overcrowding in (1) is also achieved by distortions in the O-CC angles [102.3(3)-112.7(3) ${ }^{\circ}$]. By contrast, the C -C-C angles appear to be relatively unaffected, with a range of $108.8(3)-113.5(3)^{\circ}$. The smallest Mo-PO angle $\left[108.04(9)^{\circ}\right]$ leads to the greatest outward folding of the $-\mathrm{O}^{\prime} \mathrm{Bu}$ substituent, wherein the van der Waals contact of methyl group C23 defines the semi-
$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}\right)_{2}\right]$
cone angle $(\theta / 2)$ value of 67°. The largest Mo- $\mathrm{P}-\mathrm{O}$ angle [126.03 (10) ${ }^{\circ}$] corresponds to the greatest inward folding, with methyl group C13 giving a scmi-conc angle ($\theta / 2$) value of 85°.

Other bond distances and angles in (1) are normal [e.g. mean $\mathrm{P}-\mathrm{O} 1.593(10)$, mean $\mathrm{O}-\mathrm{C}\left({ }^{\prime} \mathrm{Bu}\right) 1.463(4)$ and mean $\mathrm{C}-\mathrm{C} 1.506$ (11) \AA]. Intermolecular contacts are of the van der Waals type.

Experimental

To a clear solution of 0.15 g of tetracarbonyl(norbornadiene) molybdenum, $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{NBD})\right.$], in 5 ml of methylene chloride was added 0.8 ml of $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ ligand (Mark \& Van Wazer, 1964). The mixture was refluxed for 2 h . ${ }^{95} \mathrm{Mo}$ NMR and IR spectra in situ indicated the formation of an $\left[\mathrm{Mo}(\mathrm{CO})_{4} L_{2}\right]$ complex $\left[\delta\left({ }^{95} \mathrm{Mo}\right)=-1626\right.$ p.p.m., a poorly resolved triplet with ${ }^{1} J(\mathrm{Mo}-\mathrm{P})=216 \mathrm{~Hz}$ and $W_{1 / 2}=$ $283 \mathrm{~Hz} ; \nu_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right)$: $1904(\mathrm{sh}), 1988(\mathrm{~s})$]. Slow evaporation of the solvent yielded colourless needle crystals which were recrystallized from methylene chloride.

Crystal data

$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}\right)_{2}\right]$
$M_{r}=708.59$
Monoclinic
$P 2_{1} / n$
$a=9.2634(10) \AA$
$b=13.9834(14) \AA$
$c=14.2332(12) \AA$
$\beta=90.701$ (11) ${ }^{\circ}$
$V=1843.5(3) \AA^{3}$
$Z=2$
$D_{x}=1.277 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.835, T_{\text {max }}=$ 0.886

4221 measured reflections
3985 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25
reflections
$\theta=11.5-19.5^{\circ}$
$\mu=0.488 \mathrm{~mm}^{-1}$
$T=294(1) \mathrm{K}$
Needle
$0.40 \times 0.28 \times 0.28 \mathrm{~mm}$
Colourless

Refinement

Refinement on F^{2}
$R(F)=0.0388$
$w R\left(F^{2}\right)=0.1059$
$S=1.034$
3985 reflections
188 parameters
H atoms riding with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0581 P)^{2}\right.$ $+0.5082 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$
$\Delta \rho_{\text {max }}=0.838 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.299 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0020 (6)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Mol	0	0	0	0.03407 (12)
Pl	0.06456 (8)	0.11753 (5)	0.12305 (5)	0.0343 (2)
Ol	0.0654 (3)	0.2309 (2)	0.1112 (2)	0.0630 (6)
O 2	-0.0304 (3)	0.0960 (2)	0.21205 (14)	0.0586 (6)
O3	0.2232 (2)	0.1083 (2)	0.1687 (2)	0.0554 (6)
051	-0.1722 (4)	-0.1109 (2)	0.1573 (2)	0.0933 (10)
O61	0.2804 (4)	-0.1106 (2)	0.0674 (3)	0.1005 (11)
C11	-0.0407 (4)	0.3015 (2)	0.0778 (3)	0.0558 (8)
C12	0.0125 (6)	0.3927 (3)	0.1220 (4)	0.108 (2)
C13	-0.0290 (5)	0.3046 (3)	-0.0280 (3)	0.0802 (12)
C14	-0.1917 (5)	0.2793 (3)	0.1093 (3)	0.0838 (13)
C21	-0.0137 (4)	0.1040 (3)	0.3137 (2)	0.0573 (9)
C22	-0.1683 (5)	0.0945 (4)	0.3469 (3)	0.103 (2)
C23	0.0789 (7)	0.0238 (4)	0.3489 (4)	0.116 (2)
C24	0.0490 (6)	0.1991 (4)	0.3417 (3)	0.096 (2)
C31	0.3638 (3)	0.1479 (2)	0.1433 (2)	0.0519 (8)
C32	0.4706 (5)	0.0756 (4)	0.1842 (4)	0.0939 (15)
C33	0.3824 (4)	0.1532 (4)	0.0399 (3)	0.0873 (14)
C34	0.3857 (5)	0.2421 (3)	0.1921 (4)	0.094 (2)
C51	-0.1118 (4)	-0.0715 (3)	0.0998 (2)	0.0551 (8)
C61	0.1799 (4)	-0.0718 (2)	0.0415 (3)	0.0578 (9)

Table 2. Selected geometric parameters $\left(A^{\circ},{ }^{\circ}\right)$

Mol--P1	2.4699 (7)	$\mathrm{Ol}-\mathrm{Cll}$	1.467 (4)
Mol-C51	2.031 (3)	$\mathrm{O} 2-\mathrm{C} 21$	1.458 (4)
Mol-C61	2.027 (4)	O3-C31	1.465 (4)
P1-O1	1.595 (2)	051-C51	1.138 (4)
$\mathrm{P} 1-\mathrm{O} 2$	1.580 (2)	O61-C61	1.135 (4)
$\mathrm{P} 1-\mathrm{O} 3$	1.604 (2)		
$\mathrm{Pl}-\mathrm{Mol}-\mathrm{C} 51$	87.27 (9)	$\mathrm{O} 1-\mathrm{Cl1-C12}$	102.8 (3)
P1-Mol-C61	86.12 (10)	$\mathrm{O}-\mathrm{Cl1}-\mathrm{Cl} 3$	106.6 (3)
C51-Mol-C61	88.7 (2)	$\mathrm{O}-\mathrm{Cl1}-\mathrm{Cl} 4$	112.7 (3)
Mol-P1-O1	126.03 (10)	$\mathrm{O} 2-\mathrm{C} 21-\mathrm{C} 22$	102.3 (3)
$\mathrm{Mol}-\mathrm{Pl}-\mathrm{O} 2$	108.04 (9)	$\mathrm{O} 2-\mathrm{C} 21-\mathrm{C} 23$	109.2 (3)
$\mathrm{Mol}-\mathrm{Pl}-\mathrm{O} 3$	116.52 (9)	$\mathrm{O} 2-\mathrm{C} 21-\mathrm{C} 24$	111.5 (3)
$\mathrm{Ol}-\mathrm{Pl}-\mathrm{O} 2$	106.09 (14)	O3-C31-C32	103.3 (3)
$\mathrm{Ol}-\mathrm{Pl}-\mathrm{O} 3$	96.71 (13)	O3-C31-C33	112.2 (3)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 3$	100.14 (12)	O3-C31-C34	109.4 (3)
$\mathrm{Pl}-\mathrm{Ol}-\mathrm{Cl1}$	134.3 (2)	Mol-C51-O51	178.5 (3)
$\mathrm{Pl}-\mathrm{O} 2-\mathrm{C} 21$	136.7 (2)	Mol-C61-O61	177.8 (3)
$\mathrm{Pl}-\mathrm{O} 3-\mathrm{C} 31$	133.0 (2)		

Examination of the structure with the SOLV option in PLATON (Spek, 1994a) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: CAD-4/PC Software (Enraf-Nonius 1992). Cell refinement: SET4 and CELDIM (Enraf-Nonius 1992). Data reduction: DATRD2 in NRCVAX94 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: NRCVAX94 and SHELXL93 (Sheldrick, 1993). Molecular graphics: NRCVAX94, ORTEPII (Johnson, 1976) in PLATON (Spek, 1994a) and PLUTON (Spek, 1994b). Software used to prepare material for publication: NRCVAX94 and SHELXL93.

ECA and GF thank NSERC (Canada) for research grants.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1022). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1993). Acc. Chem. Res. 16, 146-153.
Alyea, E. C., Ferguson, G., Gallagher, J. \& Song, S.-Q. (1994). Acta Cryst. C50, 1084-1087.
Alyea, E. C., Ferguson, G. \& Song, S.-Q. (1995). Acta Cryst. C51, 2238-2242.
Alyea, E. C., Ferguson, G. \& Zwikker, M. (1994). Acta Cryst. C50, 676-678.
Alyea, E. C. \& Song, S.-Q. (1995a). Inorg. Chem. 34, 3864-3873.
Alyea, E. C. \& Song, S.-Q. (1995b). In preparation.
Bradley, F. C., Wong, E. H., Gabe, E. J. \& Lee, F. L. (1986). Inorg. Chim. Acta, 120, L21-L22.
Enraf-Nonius (1992). CAD-4/PC Software. Version 1.I. EnrafNonius, Delft, The Netherlands.
Ferguson, G., Roberts, P. J., Alyea, E. C. \& Khan, M. A. (1978). Inorg. Chem. 17, 2965-2967.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gray, G. M. \& Zhang, Y. (1993). J. Crystallogr. Spectrosc. Res. 23, 711-717.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Mark, V. \& Van Wazer, J. R. (1964). J. Org. Chem. 29, 1006-1008.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Song, S.-Q. (1994). PhD thesis, University of Guelph, Canada.
Spek, A. L. (1994a). PLATON. Program for the Automated Analysis of Molecular Geometry. Version of July 1994. University of Utrecht, The Netherlands.
Spek, A. L. (1994b). PLUTON. Program for the Display and Analysis of Crystal and Molecular Structures. Version of July 1994. University of Utrecht, The Netherlands.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
Ueng, C.-H. \& Hwang, G.-Y. (1991). J. Chem. Soc. Dalton Trans. pp. 1643-1645.

Acta Cryst. (1996). C52, 69-72

A Novel Octanuclear Mixed-Metal Cluster: $\mathrm{Na}_{2}\left[\mathrm{Cr}_{0.5} \mathrm{Fe}_{0.5} \mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}\right]_{2}$

Huang Liu, Li Xu, Jinshun Huang,* Wendan Chen and Qianer Zhang

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
(Received 14 October 1993; accepted 28 February 1995)

Abstract

The structure of disodium bis [μ-oxo-tri- μ_{3}-oxopentakis (μ-propionato- $\kappa O: \kappa O^{\prime}$)tris(propionato- κO)-0.5-chromium- 0.5 -irontrimolybdenum] ($3 \mathrm{Mo}-\mathrm{Mo}$), $\mathrm{Na}_{2}-$ $\left[\mathrm{Cr}_{0.5} \mathrm{Fe}_{0.5} \mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{8}\right]_{2}$, consists of a centrosymmetric cluster anion, $\left[\left(\mathrm{EtCO}_{2}\right)_{8} \mathrm{Mo}_{3} \mathrm{O}_{4} \mathrm{CrFeO}_{4} \mathrm{Mo}_{3}\left(\mathrm{O}_{2} \mathrm{C}\right.\right.$ -

$\mathrm{Et})_{8} \mathrm{~J}^{2-}$, in which two $\mathrm{Mo}_{3} \mathrm{O}_{4}$ units are joined by the Fe and Cr atoms to complete a circular $\left[\mathrm{Mo}_{3} \mathrm{O}_{4} \mathrm{CrFeO}_{4} \mathrm{Mo}_{3}\right]^{14+}$ species. Each Na atom is coordinated to five O atoms to form a trigonal bipyramid with an average $\mathrm{Na}-\mathrm{O}$ distance of 2.32 (2) \AA. The anions are connected by Na cations to form a onedimensional infinite chain structure.

Comment

Triangular trinuclear cluster species with an $\left[M_{3} \mathrm{O}_{4}\right]^{4+}$ core ($M=\mathrm{Mo}, \mathrm{W}$) have been studied extensively (Mardon \& Pernick, 1973; Murmann \& Shelton, 1980). The sandwich-cubane type $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4} M^{\prime} \mathrm{S}_{4} \mathrm{Mo}_{3}\right.$] and double-cubane type $\left[M_{3} S_{4} M^{\prime} M^{\prime} \mathrm{S}_{4} M_{3}\right]$ species have been investigated by Shibahara, Akashi, Yamasaki \& Hashimoto (1991), and Wolff, Berg, Hodgson, Frankel \& Holm (1979). Here, we report a novel insoluble octanuclear mixed-metal cluster with a circular $\left[\mathrm{Mo}_{3} \mathrm{O}_{4} \mathrm{CrFeO}_{4} \mathrm{Mo}_{3}\right]^{14+}$ cation.

The black crystals of title compound, (I), were obtained from the redox reaction of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{Cr}(\mathrm{CO})_{6}$ and $\mathrm{Fe}(\mathrm{CO})_{5}$ in propionic anhydride. The crystals are very stable in air and difficult to dissolve in water, general organic solvents and acids.

(I)

The X-ray structure study indicates that Cr and Fe atoms are disordered in the crystal lattice. The structure of $\mathrm{Na}_{2}\left[M \mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}\right]_{2}(M=0.5 \mathrm{Cr}+$ 0.5 Fe) consists of an octanuclear centrosymmetric anion $\left[\left(\mathrm{EtCo}_{2}\right)_{8} \mathrm{Mo}_{3} \mathrm{O}_{4} M M \mathrm{O}_{4} \mathrm{Mo}_{3}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}\right]^{2-}$, where the two $\left[\mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{8}\right]^{4-}$ units are joined by two M atoms through four $\mu_{3}-\mathrm{O}$ (from $\mu_{2}-\mathrm{O}$ atoms in both the Mo_{3} units) and eight bridging EtCO_{2} groups as shown in Fig. 1.

Each M atom is coordinated by six O atoms, two from $\mu_{3}-\mathrm{O}$ atoms and four from propionate bridges. They complete regular octahedral coordination. The average $M-\mu_{3}-\mathrm{O}$ bond length of $1.980(9) \AA$ is significantly longer than the $\mathrm{Fe}-\mu_{3}-\mathrm{O}$ length of 1.905 (5) \AA found in the related cation $\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6} L_{3}\right]^{+}$(Blake $\&$ Fraser, 1975) or the $\mathrm{Cr}-\mu_{3}-\mathrm{O}$ length of $1.89 \AA$ in $\left[\mathrm{Cr}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6} L_{3}\right]^{+}$(Chang \& Jeffrey, 1970), as a result of the $\mathrm{Fe}_{3} \mathrm{O}$ or $\mathrm{Cr}_{3} \mathrm{O}$ four-centre $d-p-d \pi$-bonding found in the later two.

